Enantioselective Synthesis of β-Iodo Morita–Baylis–Hillman Esters by a Catalytic Asymmetric Three-Component Coupling Reaction**

Bidyut Kumar Senapati, Geum-Sook Hwang, Sungil Lee, and Do Hyun Ryu*

Angewandte Chemie Int. Ed. 2009, early view.

Nolan D. Griggs - 5-22-2009

The Morita-Baylis Hillman Reaction - Overview

• First example by Morita and co-workers in 1968: Morita, K., Suzuki, Z., Hirose, H. *Bull. Chem. Soc. Jpn.* **1968**, 41, 2815.

$$\begin{array}{c} R^{1} & & O \\ H & & H \\ R^{2} \end{array} \xrightarrow{\begin{array}{c} Cy_{3}P (6 \text{ mol } \%) \\ \text{dioxane, } 120 - 130 \ ^{\circ}C \\ 70 - 90\% \end{array} \xrightarrow{\begin{array}{c} OH \\ R^{2} \end{array} \xrightarrow{\begin{array}{c} H \\ R^{2} \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ R^{1} \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array}} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ R^{1} \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array}} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array}} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array}} \xrightarrow{\begin{array}{c} R^{1} \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array}} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array} \xrightarrow{\begin{array}{c} R^{1} \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array}} \xrightarrow{\begin{array}{c} R^{1} \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array}} \xrightarrow{\begin{array}{c} R^{1} \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ \end{array}} \xrightarrow{\begin{array}{c} R^{1} \end{array}$$

• Later published 1972 by Baylis and Hillman in a German patent: Baylis, A.B., Hillman, M.E.D. *Acrylic Compounds.* De 2155113, **1972** (Celanese Corp.).

Asymmetric Morita-Baylis-Hillman Reaction

• Auxillary based:

For a review, see: Langer, P. Angew. Chemie. Int. Ed., 2000, 39, 3049.

Stereochemical Control of β -branched MBH products

• Kataoka and co-workers - Angew. Chemie. Int. Ed. 2000, 39, 2358.

• Ramachandran and co-workers - J. Org. Chem, 2003, 68, 9310.

• Scheidt and co-workers - J. Am. Chem. Soc. 2006, 128, 15382.

• For an asymmetric version using (Salen)CrSbF₆ w/ ee = 61-94%, see: Angew. Chemie. Int. Ed., **2007**, 46, 7806.

• Coltart and co-workers - Org. Lett., 2008, 10, 4819.

Synthesis of β -halo MBH products

• E-stereocontrolled β-halo MBH products:

• Z-stereocontrolled β-halo MBH products: Review - Recent Res. Dev. Org. Bioorg. Chem. 2001, 49.

Asymmetric Synthesis of β -iodo MBH products

Title Paper: Catalytic Asymmetric Synthesis of $\beta\text{-Iodo}$ MBH Products

 Initial Screening: 	O Ph	`H +	- 11	O OR ¹ + iodide source cat. (20	$\xrightarrow{\text{OH O}}_{0 \text{ mol}\%)} Ph \xrightarrow{\text{OH O}}_{0 \text{ mol}\%} OR$					
	Entry	Cat.	R۱	Reaction conditions	Yield [%] ^[b]	Z/E ^[c]	ee [%] ^[d]			
H Ar X H X = TfO 1a: Ar = phenyl, X = TfO 1b: Ar = phenyl, X = Tf ₂ N 1c: Ar = 3,5-dimethylphenyl(mexyl), X = TfO	1 2 3 4 5 6 7 8 9	1a 1a 1a 1b 1a 1a 1a 2	Et Et Et Et Me <i>t</i> Bu Et Et	<i>n</i> Bu ₄ NI, CH ₂ Cl ₂ , -40° C, 10 h TMSI, CH ₂ Cl ₂ , -40° C, 3 h TMSI, CH ₃ CH ₂ CN, -40° C, 10 h TMSI, toluene, -78° C, 5 h TMSI, CH ₂ Cl ₂ , -78° C, 3 h TMSI, CH ₂ Cl ₂ , -78° C, 1.5 h TMSI, CH ₂ Cl ₂ , -78° C, 10 h TMSI, CH ₂ Cl ₂ , -78° C, 2 h TMSI, CH ₂ Cl ₂ , -78° C, 2 h	26 68 38 85 92 92 92 0 93 90	85:15 90:10 88:12 92:8 94:6 99:1 - >99:1 >99:1 >99:1	20 77 69 84 67 84 – 87 ^[e] 87 ^[f]			
	[a] Reactions run with 1.0 mmol of benzaldehyde, 2.0 mmol of ethyl- propiolate, 1.5 mmol of the iodide source, and 0.2 mmol of catalyst. [b] Yield of isolated product. [c] Determined after separation by column chromatography. [d] Determined by HPLC on a chiral stationary phase. [e] The absolute configuration of 3 was determined to be <i>R</i> enriched. For details see the Supporting Information. [f] The absolute configuration of 3 was determined to be <i>S</i> enriched.									

Title Paper: Catalytic Asymmetric Synthesis of β -Iodo MBH Products

 Scope and Limitations: 	R H	+ //		MSI -	cat. 1 (20 mol%)				
		-			$CH_2CI_2, -78$ °C	(R)			
						4	4		
	Entry	Catalyst	R	<i>t</i> [h]	Yield [%] ^[b]	$Z/E^{[c]}$	ee [%] ^[d]		
H Ar H Ar x^{-} H Ar $x^$	1	1c	Ph	1	95	> 99:1	94		
	2	1c	$4-FC_6H_4$	3	92	> 99:1	92		
	3	la	$4-CF_3C_6H_4$	4	75	99:1	92		
	4	1a	$4-CIC_6H_4$	2	99	99:1	96		
	5	la	2-BrC ₆ H ₄	5	95	>99:1	90		
	6	la	4-BrC ₆ H ₄	5	90	96:4	93		
	7	1a	$4-CNC_6H_4$	6	91	97:3	95		
	8	la	$4 - NO_2C_6H_4$	30	66	92:8	90		
	9	1c	$4 - MeC_6H_4$	1.5	92	99:1	62		
	10	1c	$4-PhC_6H_4$	1.5	95	92:8	90		
	11	la	2-naphthyl	12	65	98:2	91		
	12 ^[e]	1b	nPr	8	72	96:4	93		
	13 ^[e]	1b	<i>n-</i> hexyl	12	61	97:3	90		
	14 ^[e]	1b	<i>i</i> Pr	12	50	95:5	90		
	[a] Reactions run with 1.0 mmol of aldehyde, 2.0 mmol of ethylpropio- late, 1.5 mmol of TMSI, and 0.2 mmol of catalyst. [b] Yield of isolated product. [c] Determined after separation by column chromatography. [d] Determined by HPLC on a chiral stationary phase. [e] Reaction run using 2.5 equivalents of ethyl propiolate and 2.0 equivalents of TMSI at -60 °C.								

Title Paper: Catalytic Asymmetric Synthesis of $\beta\text{-Iodo}$ MBH Products

• Proposed Transition-state model:

For similar oxazaborolidinium catalyst complexes involving aldehydes, see: Ryu, D.H., Corey, E.J. *J. Am. Chem. Soc.* **2003**, *125*, 6388. Ryu, D.H., Corey, E.J. *J. Am. Chem. Soc.* **2004**, *126*, 8106.

For discussion of pentacoordinated boron species, see: Maruoka, J. et al. *J. Am. Chem. Soc.* **1998**, *120*, 5327.

Title Paper: Catalytic Asymmetric Synthesis of $\beta\text{-Iodo}$ MBH Products

• Further Application of MBH adducts:

Conclusions

- Ryu, D.H. and co-workers have developed a catalytic, highly enantioselective three-component coupling between an aldehyde, ethyl propiolate, and TMSI to give optically active (Z)-β-iodo Morita-Baylis-Hillman esters.
- Both enantiomers are accessible using the appropriate, readily available oxazaborolidinium catalyst, and the absolute configuration matches that predicted by the transition state model.
- Further functionalization of the product vinyl iodides led to highly functionalized, optically active Z-olefin-containing products.